

Paper 4 – SET A KEY

13th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS – September, 2012

PAPER – 4: Energy Performance Assessment for Equipment and Utility Systems

Date: 16.9.2012 Timings: 14:00-16:00 HRS Duration: 2 HRS Max. Marks: 100

Section - I: BRIEF QUESTIONS

Marks: 10 x 1 = 10

- (i) Answer all Ten questions
- (ii) Each question carries One mark

S-1	In a vapour compression refrigeration system, why the heat rejected in the condenser is more than the heat absorbed in the evaporator ?		
Ans	Because heat of compression is also added to it		
S-2	If the unit heat rate is 3120 kcal/kWh and the turbine heat rate is 2808 kCal/kWh what is the boiler efficiency ?		
Ans	(2808/3120) x 100 = 90 %		
S-3	A rise in conductivity of boiler feed water indicates		
Ans	Rise in the TDS level of feed water		
S-4	Why is it preferable to measure the flow at the inlet side of the fan?		
Ans	Less turbulence		
S-5	The critical point of steam occurs atbar and°C		
Ans	221.2 bar and 374.15°C		
S-6	In a heat exchanger is the ratio of actual heat transfer rate to the maximum heat transfer rate.		

Ans	Effectiveness			
S-7	In an integrated steel plant pig iron is produced fromfurnace?			
Ans	Blast furnace			
S-8	PLF of a 210 MW power plant is 80% , what is the annual gross generation in MWh			
Ans	1,471,680 MWH			
S-9	A pump operates on water with a total head of 12 m. If water is replaced by brine with a specific gravity of 1.2 what will be the total head developed by the pump ?			
Ans	12 m or same			
S-10	A draft system in a boiler which uses both FD and ID fan is called			
Ans	Balanced Draft			

..... End of Section - I

Section - II: SHORT NUMERICAL QUESTIONS

Marks: 2 x 5 = 10

- (i) Answer all <u>**Two**</u> questions
- (ii) Each question carries **Five** marks

L-1	Calculate pressure drop in meters when pipe diameter is increased from 250 mm to 300 mm for a length of 600 meters. Water velocity is 2 m/s in the 250 mm diameter pipe and friction factor is 0.005.
Ans	Pressure drop = $4fLV^2$
	2gD
	Velocity of water in pipe of 300 mm diameter = $(0.25 \times 0.25 \times 2) / (0.3 \times 0.3)$ = 1.39 m/s
	Pressure drop with 300 mm = $4 \times 0.005 \times 600 \times 1.39^2 / (2 \times 9.81 \times 0.300)$ = 3.94 m

L-2	A three phase 37 kW four pole induction motor operating at 49.8 Hz is rated for 415 V, 50 Hz and 1440 RPM. The actual measured speed is 1460 RPM. Find out the percentage loading of the motor if the voltage applied is 410 V.				
Ans					
	% Loading = $\frac{\text{Slip}}{(2\pi - 2\pi)^2} \times 100\%$				
	$(SS - Sr) \times (Vr / V)^{-1}$				
	Synchronous speed = 120 x 49.8 / 4 = 1494 rpm				
	Slip = Synchronous Speed – Measured speed in rpm.				
	= 1494 – 1460 = 34 rpm.				
	% Loading =34 x 100% = 61.45% (1494 - 1440) x (415/410) ²				

..... End of Section - II

Section - III: LONG NUMERICAL QUESTIONS Marks: 4 x 20 = 80

- (i) Answer all **Four** questions
- Refer Original question paper for questions

Paper 4 – SET A KEY

Mass of dry flue gas= $\frac{0.3395 \times 44}{12}$	$\frac{4}{-}+0.0$	$0091 + \frac{5.8}{1}$	$\frac{7 \times 77}{00} + \frac{1}{2}$	(5.87 –	$(4.27) \times 2$	23	
12	_	6 15 kg	/ ka of c	ool	100		
	=	0.15 Ky	/ kg 01 C	Uai			
		(or)					
(actual mass of air supplied + 1)	– mas	s of H ₂ 0					
(5.87 + 1) - (9H + M) = 6.87 - (92)	x.05 +	· 0.1079)=	6.87 – 0).5579	= 6.31 kថ	g/kg of co	al
% Heat loss in dry flue gas	=	$\frac{m \times C_{P}}{GC}$	$x (T_f -$	· T _a) x	100		
	_	6.15 x ($0.23 \ x \ (10)$	60 - 32)	$)_{r,100}$		
	_	5 07 %	3568		- 100		
	-	5.07 /0					
Loss due to CO	=						
	:	$\frac{\%CO x}{\%CO + \%}$	$\frac{C}{CO_2} \times \frac{1}{G}$	$\frac{5654}{CV of f}$	fuel x 100		
	=	$\frac{0.35 \times 0.3}{(0.25 + 1.4)}$	<u>3395 x </u>	<u>5654</u>			
		(0.55+14) X 3300				
L2	= 1.3	31 %					
Heat Loss in ash							
% heat loss due to unburnt flyas	h						
% ash in paddy husk Ratio of bottom ash to flyash	= 16. = 10:	73 :90					
GCV of flyash	= 45	0 kcal/kg					
Amount of hydern in it ky of husk	= 0.8 = 0.	15 kg					
Heat loss in flyash	= 0. = 67	15 x 450 7.5 kcal/kg	of husk				
GCV of bottom ash	= 80	00 kcal/kg					
Amount of bottom ash in 1 kg of I	husk	$= 0.1 \times 0.0000$	1673				
Heat loss in bottom ash		= 0.01673 = 0.01673 = 13.4 kc	з ку 3 x 800 al/kg of	husk			
			-				

	Total heat loss in ash	= 67.5 + 13.4 = 80 9 kcal/kg
	% loss in ash	= 80.9/3568
		= 2.26 %
	Total losses	= 100 - (5.07 + 1.31 +2.26) - (15.4)
	Boiler efficiency =	100 - 8.64 - 15.4 = 75.96 %
N-2		KEY
	Hot Water use per day : 20,000 L/da	ау
	Water in = 20° C	
	Water out = 60° C	
	Total Heat required = mCpdt	
	$= 20000 \times 1 \times 10000$	40 = 8,00,000 kcal/day
	1. Energy Requirement for 20KL/d deg.C in an Electric Boiler/Geyse	ay of water for a temperature differential of 40
	Energy Requirement (for 20 KL/day) = <u>Total heat</u> 860 kcal = 939.6 kWI	<u>required</u> (800000) /kWh x 0.99 (efficiency of electric heating)) n/day
	2. For 20 KL/day, of water flow wit Heat Pump	h 40 ⁰ C Temperature Diff. Energy to be drawn by
	= <u>8,00,000</u> 860x0.95x2.5	= 391.68 Kwh/day
	Energy drawn by circulation pump	= 3.74 x 24 hr = 89.76 kWh/day
	Energy drawn by evaporator fan	= 1.4 kW x 16 hr = 22.4 kWh/day
	Total Energy drawn by heat pump sy	rstem = 391.68 +89.76+22.4 = 503.8 kWh /day
	SAVINGS IN COMPARISON TO EL	ECTRIC WATER HEATER
	= 939.6 – 503.8 = 438 = 1,52,516 kWh/year (= 12.20 lakhs (@ Rs8	5.75 Kwh/day (@ 350 days/year) 3.0 per kWh)

	 SIMPLE PAY BACK PERIOD year savings =) = Rs = 1.30	.16.0 LAKHS Investment/ Rs.12.20 lakhs per years or 16 months
N-3			KEY
Ans			
	Power generation from cogen plant	=	5000X 0.9 X 8000 = 360 lac Kwh/yr
	Auxiliary power Net power generation	= =	1% 0.99 X 360 = 356.4 lac Kwh
	Natural gas requirement for power generation	=	360 X 3050 / 9500 = 115.57 lac sm ³
	Cost of fuel per annum	=	115.57 X 8 = Rs.924.56 lacs
	Annual expenditure for interest, depreciation and O&M	=	500 + 200 = 700 lacs
	Total cost of generation	=	Rs.1624.56 lacs.
	Cost of cogeneration power	=	1624.56 X 10 ⁵ / 356.4 X 10 ⁵
		=	Rs.4.56 / Kwh.
	Gas consumption in existing gas fired boiler	= = =	[10000 (665 – 85) / (0.86 X 9500)] 710 Sm³/hr 710 x 24 = 17040 sm³/day
	Cost of steam from existing boiler	= =	710*Rs. 8 x8000 Rs. 454.4 Lacs /yr
	Cost of power generation after giving credit for steam generation	j =	1624.56 – 454.4 = Rs.1170.16 lacs
	Cost of power generation after accou	inting =	1170.16 X 10 ⁵ / 356.4 X 10 ⁵
		=	Rs. 3.28 / Kwh
	Grid power cost	=	Rs. 4.5 / Kwh
	Cost advantage for cogen plant generation	=	4.5 – 3.28 = Rs.1.22 / Kwh
	Daily gas requirement for operating GT cogen plant	=	5000 X 0.9 X <u>3050</u> X 24 9500
		_	$34673.68 \text{ Sm}^3 / \text{day}$

	Additional gas requirement for = 34673.68 – 17040 = 17633.68 Sm ³ /day co-gen plant
N-4	To attempt ANY ONE OF THE FOLLOWING among A B C and D
N4 A	KEY
Ans	i) Turbine power output kW =
	Steam flow to turbine kg/hr x enthalpy drop across the turbine kcal/kg
	860
	Inlet enthalpy of steam =794.4 kcal/kg
	Enthalpy of exhaust steam is calculated as given below
	exhaust steam dryness fraction = 90% enthalpy of exhaust steam = (45.9 + 0.9 x 572.5) = 561 kcal/kg
	turbine out put = ((120 x 1000 kg/hr x (794.4 – 561) kcal/kg) /860 turbine output = 32567.4 kW
	ii) generator output kW = turbine output x combined efficiency of mechanical, gear transmission & generator
	= 32567.4 x 0.92 =29962 kW
	iii) turbine heat rate = heat input in to the turbine/ generator out put =q x (h1 - hw)/generator out put
	Where q = steam inflow to turbine kg/hr h1= enthalpy of turbine inlet steam =794.4 kcal/kg hw= enthalpy of feed water to boiler = 100 kcal/kg
	Turbine heat rate = ((120 x 1000 kg/hr) x (794.4 – 100) kcal/kg))/ 29962 kw = 2781 kcal/kwh
	iv) unit heat rate = turbine heat rate /boiler efficiency = 2781 / 0.88 = 3160 kcal/ kwh
	v) turbine cycle efficiency = (860 / turbine heat rate) x 100 = 860 /2781 =0.309 =0.309 x 100 = 30.9%
	vi) condenser heat load = m x cp x dt
	Where m = cooling water flow through condenser, kg/hr

	note: density of water is given as 0.95 g /cubic centimetre = 950 k cp = specific heat of cooling water, kcal/ kg. °C = 0.98 kcal /kg. °C dt = cooling water temperature rise, °C = 10 Condenser heat load =6318 x 950 x 0.98 x 10 = 5,88,20,580 kcal /hr vii) specific steam consumption of turbine = 860 / (enthalpy drop x combin = 860/ ((794.4 - 56 =860 / (233.4 x 0.9 = 4.0 kg / kwh	kg/ cubic meter ned efficiency) 61) x 0.92)) 92) =4.0 kg/kwh				
N4-B	KEY					
Ans	Volumetric flow rate of PH gas at NTP = 1.47 x 125 x 1000 = 183750	[Nm3/hr]				
	Mass flow rate of PH gas = 183750 x 1.42 = 260925	[kg/hr]				
	Calculation for 4 stage pre-heater kiln					
	Heat loss in PH Gas = $m x cp x T$	[kcal/hr]				
	$= 260925 \times 0.244 \times 370 = 23556309$ Equivalent coal wasted $= \frac{23556309}{5540 \times 1000} = 4.252$	[kcal/nr] [tons of coal/hr]				
	Electrical Energy consumption of PH Fan					
	Volumetric flow rate of PH Gas at 370 °C temperature and -400 mm WC static pressure:					
	$V = 183750 X \frac{(273 + 370) X 10333}{273 X (10333 - 400)} = 450216$	[m ³ /hr]				
	or V = 450216/3600 = 125	[m ³ /sec]				
	Pressure difference across PH fan $= 50 - (-400) = 450$ Power consumption of PH fan	[mm WC]				
	$P = \frac{125 \mathrm{X}450}{102 \mathrm{X}0.72 \mathrm{X}0.95} = 806.24$	[kW]				
	Calculation for 6 stage pre-heater kiln					
	Heat loss in PH Gas = m x cp x T = 260925 x 0.244 x 295 = 18781381	[kcal/hr] [kcal/hr]				
	Equivalent coal wasted = $\frac{18781381}{5540X1000}$ = 3.39	[tons of coal/hr]				
	Electrical Energy consumption of PH Fan Volumetric flow rate of PH Gas at 295 °C temperature and -600 mm WC static pressure: $V = \frac{183750X}{273X} \frac{(273+295)X10333}{273X(10333-600)} = 405875$	[m ³ /hr]				
	Or $V = 405875/3600 = 112.75$	[m ³ /sec]				

Paper 4 – SET A KEY

	Pressure difference across PH fan $= 50 - (-600) = 650$ Power consumption of PH fan	[mi	n WC]
	$P = \frac{112.75 \times 650}{102 \times 0.72 \times 0.95} = 1050.4$	[kV	V]
	The above kilns can be compared as follows:	6 Stage PH Kiln	4 stage PH kiln
	PH Gas heat loss (kcal/br)	18781381	23556309
	Equivalent coal wasted (tons of coal)	3.39	4.252
	Power consumption in PH Gas (kW)	1050	806.24
	Calculation for annual Monetary savings		
	Coal savings in 6 stage PH Kiln $= 4.252 - 3.39 = 0.862$	[tor	n of coal/hr]
	Annual monetary savings (Thermal) $= 0.862 \times 8000 \times 6150 = 4$,	24,10,400	[Rs.]
	Additional Electrical energy requirement for 6 stage PH Kiln = 1050.4	- 806.24 = 244.16	[kW]
	Annual additional electrical cost $= 244.16 \times 8000 \times 5 = 9$	97,66,400	[Rs.]
	It is obvious that in monetary terms, thermal energy saving in 6 stage pre- electrical energy cost in 4 stage kiln. Therefore, 6 stage pre-heater kilkiln.	re-heater kiln is highe n is better option tha	er than the additional in 4 stage pre-heater
	So the net annual monetary saving in case of 6 stage pre-heater kiln is = $4,24,10,400 - 97,66,400$	= 3,26,44,000	[Rs.]
N4-C	KEY		
Ans	a)		
	Before insulation		
	Surface heat loss, $S = [10 + (TS-Ta)/20] \times (Ts -Ta)$		
	Total heat Loss $=$ S x A where A= Surface	e area. m^2	
	Surface heat loss $S = [10 + (110-25)/20] \times (110-25)$	() = 1211.25 K Ca	l/m ² /hr
	Total heat loss $= 1211.25 \times 20 \text{ m}^2 = 24225 \text{ k}$) = 1211.20 18.0u `al/hr	
	$- 1211.25 \times 20 \text{ m}^2 - 21223 \text{ K}^2$		
	After insulation Surface heat loss ,S = $[10 + (55-25)/20] \times (55-25) =$	=345 K.Cal/m ² /hr	
	Total heat loss $= 345 \times 20 \text{ m}^2 = 6900 \text{ kCal/hr}$		
	Heat reduction per hour after proper insulation = $24225-690$	00 = 17325 kCal	/hr
	Annual heat loss reduction = 17325 x 8000 = 138600000		
	= 138.6 millior	n kCal/year	
	Steam distribution loss $= 20\%$		
	Heat loss $= 138.6$ million kCa	1/0.8 = 173.25 m	illion kcal/vear
	Boiler efficiency = 70%	2 5.5 — 17 <i>5.25</i> III	inter your
	Equivalent coal consumption reduction = $173.25 \times 10^6 / 0.7 \times 10^6 = 1000 \times 10^6 / 0.7 \times 10^6 = 1000 \times 10^6 / 0.7 \times 10^6$	4800 = 51.56 T	on /year

	Monetary Cost savings per	year $= 51.5 \times 5000 = \text{Rs} \ 2.575 \text{ lacs}$
	Investment @ Rs 1000 per M	$\mathbf{M}^2 = 20 \ge 1000 = \text{Rs} \ 20000$
	Condensate recovery	
	Reduction in coal consumption	on through
	heat recovered from condens	ate return = $2000 \times 1 \times (80 - 40) / 0.7 \times 4800$
		= 23.8 kg of coal per hour
	Annual coal savings	$= 23.8 \times \frac{8000}{1000}$
	8-	= 190.4 ton / year
	Annual savings	$= 23.8 \times 8000 \times Rs 5/kg$ coal
	i initiali sa vings	$- R_{\rm s} = 0.52$ lacs
		- 1(5, 7,52 lacs
	h)Simple perhaps period	
	D)Simple payback period	$2.575 \pm 0.52 = 12.1$ labe
	Total savings from both th	= 2.575 + 9.52 = 12.1 lakits
	I otal investment	= Ks. 20,000 + Ks 2 lakns $=$ Ks.2.2 lakns
	Simple payback period (c	(2.2/12.1 = 2.2 months)
	c)GHG emission reduction	
	Carbon content in the coa	l = 40% by weight
	Total Coal saving /year	= 51.5 + 190.4 = 241.9 Ton per year
	CO_2 reduction	$= 241.9 \text{ x } 0.4 \text{ x } 44/12 = 355 \text{ Ton of CO}_2/\text{year}$
N4-I		KEY
Ans	Theoretical air required for a	complete combustion
	=[(11.6x85.9)x(34.8x(12-0.7))x(12-0.7))x(12-0.7)x(12-0.7))x(12-0.7)x(12-0.7)x(12-0.7))x(12-0.7)x(12-0.7)x(12-0.7)x(12-0.7)x(12-0.7))x(12-0.7)x(12-	/8))+4.35x0.5]/100
	=996.44 + 414.12 + 2.175/100	
	=14.1 kg/kg of oil	
	Existing oxygen % in flue ga	us =6%
	% excess air supplied	=6 x100/(21-6) = 40%
	Actual mass of air supplied	= $(1+Excess air/100)x$ Theoretical air
		=(1+40/100)x 14.1
		=19.74 kg/kg of oil
	After modification, oxygen	% in flue gas $=3\%$
	% excess air supplied	$=3 \times 100/(21-3) =$ 16.67%
	11	
	Actual mass of air supplied	= $(1+\text{Excess air}/100)x$ Theoretical air
		$=(1+16.67/100) \times 14.1$
		=16.45 kg/kg of oil
		=16.45 kg/kg of oil
	a) Heat loss reduction three	=16.45 kg/kg of oil ough actual mass of air supplied

Actual mass of air supplied before WHR = 19.74 kg/kg of oil Actual mass of air supplied AFTER WHR = 16.45 kg/kg of oil				
Actual mass of air supplied AFTER WHR =16.45 kg/kg of oil				
Existing oil consumption per hour = $25 \text{ ton/hr x } 60 \text{kg/ton} = 1500 \text{ kg of oil /hr}$				
Flue gas loss before WHR = $[1500 \text{ kg oil} + (1500 \text{ x } 19.74 \text{ kg air})] \text{ x } 0.24 \text{ x } (600-30)$ = 4255848 kcal/hr				
Flue gas loss after WHR = $[1500 \text{ kg oil} + (1500 \text{ x } 16.45 \text{ kg air})] \text{ x } 0.24 \text{ x } (300-30)$ = 1696140 kcal/hr				
Flue gas heat loss reduction after WHR implementation = 4255848-1696140 = 2559708 kcal/hr				
Reduction in fuel oil consumption after installing Waste heat recovery and reduction in excess air $= 256 \text{ kg/hr}$				
Furnace efficiency after WHR $= \frac{25000 \times 0.12 \times (1200-40)}{[(1500-256) \times 10000)]} \times 100$ $= 28 \%$				
b) <u>Calculate fuel oil reduction after charging hot ingot in reheating furnace</u>				
Ingot charging temperature is increased from 40 °C to 500 °C				
Fuel oil reduction due to increased charge temperature = = $25 \times 1000 \times 0.12 \times (500-40)/0.28 \times 10,000$ = 492.86 kg/hr = 493 kg/hr				
c) Specific oil and power consumption after implementing both the above measure				
Fuel oil reduction after implementation of both measures = $256 + 493 = 749$ kg oil/hr				
Fuel oil consumption after implementation of both measures = $1500 - 749 = 751$ kg oil/hr				
Yield improvement $= 3\%$ Production after implementation $= 25 \times 1.03 = 25.75 \text{ ton/hr}$ of both measures $= 25 \times 1.03 = 25.75 \text{ ton/hr}$				
Specific oil consumption $= 751/25.75 = 29.2 \text{ kg/Ton}$				
Specific power consumption $= 25x90/25.75 = 87.37 \text{ kWh/ton}$				

----- End of Section - III -----