

#### 13<sup>th</sup> NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS - September 2012

 PAPER – 2:
 Energy Efficiency in Thermal Utilities

 Date: 15.9.2012
 Timings:14:00-17:00Hrs
 Duration:3 Hrs
 Max.Marks:150

#### Section – I: OBJECTIVE TYPE

Marks: 50 x 1 = 50

Answer all 50 questions (i) (ii) Each question carries one mark 1. Steam mains are run with a slope primarily to a) avoid water hammer b) increase the velocity of steam c) avoid condensation of steam d) reduce radiation and convection losses 2. Which of the following is not true of condensate recovery? a) reduces water charges b) reduces fuel costs c) increases boiler output d) increases boiler blow down If 10% air is entrained in a steam system at 3 kg/cm<sup>2</sup> g then the saturation temperature of steam 3. will be a) less than the saturation temperature at 3 kg/cm<sup>2</sup> g b) more than the saturation temperature at  $3 \text{ kg/cm}^2 \text{ g}$ c) equal to the saturation temperature at 3 kg/cm<sup>2</sup>g d) equal to the saturation temperature at  $3.3 \text{ kg/cm}^2 \text{ g}$ The mineral matter in coal after combustion mostly becomes 4. b) carbon monoxide a) carbon dioxide c) nitrous oxide d) <u>ash</u> 5. Conditioning of coal with water in certain boilers is done to a) increase unburnt losses b) increase GCV c) minimize losses of fine coal particles d) increase convection heat transfer 6. Which of the following is false? a) LPG vapour is twice as light as air b) LPG is a mixture of propane and butane c) LPG is a gas at normal atmospheric pressure d) LPG is required to be odorized 7. Of the following fuels, which will have the highest carbon content? a) furnace oil b) coal c) natural gas d) paddy husk



| 8.  | 100 kg of a fuel cor<br>kg of ox             | •                         | r complete combustior           | n of sulphur it w                | ill require         |
|-----|----------------------------------------------|---------------------------|---------------------------------|----------------------------------|---------------------|
|     | <u>a) 2</u>                                  | b) 4                      | c) 50                           |                                  | d) 200              |
| 9.  | In the direct method                         | d of efficiency evaluat   | ion of boilers which of         | the following is                 | not required?       |
|     | a) enthalpy of stear                         | n                         | b) calorific                    | value of fuel                    |                     |
|     | c) <u>O<sub>2</sub> in flue gas</u>          |                           | d) mass flo                     | ow rate of steam                 | I                   |
| 10. | Select the incorrect                         | statement with respe      | ct to steam                     |                                  |                     |
|     | b) higher the press                          | ure higher is the laten   | n saturation temperate          | ure                              |                     |
| 11. | The amount of flash                          | n steam generated fro     | m the condensate ma             | inly depends on                  |                     |
|     | a) sensible heat of                          | high pressure conden      | sate b) sensi                   | ble heat of flash                | steam               |
|     | c) latent heat of flas                       | sh steam                  | <u>d) all of</u>                | the above                        |                     |
| 12. | Tuyeres is a termin                          | ology associated with     |                                 |                                  |                     |
|     | a) induction furnace                         | e b) pusher type          | e furnace c) arc                | furnace                          | d) <u>cupola</u>    |
| 13. | In determining the required?                 | economic thickness        | of steam pipe insula            | tion which of th                 | e following is not  |
|     | a) cost of fuel                              | b) boiler efficiency      | c) steam press                  | <u>sure</u> d) h                 | eat content of fuel |
| 14. | The softening temp                           | erature of a refractory   | is indicated by                 |                                  |                     |
|     | a <u>) Pyrometric cone</u><br>c) creep       | <u>equivalent (</u> PCE)  |                                 | ness under load<br>hing strength | (RUL)               |
| 15. | Which of the follow                          | ng is not a property o    | f ceramic fibre ?               |                                  |                     |
|     | a) low thermal cond<br>c) high heat capaci   |                           | b) light weigl<br>d) thermal sh | nt<br>nock resistant             |                     |
| 16. | Low combustion ter                           | mperature in FBC boil     | lers results in the redu        | ced formation o                  | f                   |
|     | a <u>) NOx</u>                               | b) SOx                    | c) CO                           |                                  | d) CO <sub>2</sub>  |
| 17. | An axial compresso                           | or is used in conjunction | on with which of the fo         | llowing                          |                     |
|     | a <u>) gas turbine</u><br>c) condensing stea | m turbine                 |                                 | pressure steam the above         | turbine             |
| 18. | Power is to be gene                          | erated from a cement      | kiln exhaust gas. The           | applicable type                  | of cogeneration is  |
|     | a) topping cycle                             | b) trigeneration          | c) bottoming cycle              | d) none of the                   | above               |
| 19. | The effectiveness c                          | f a heat exchanger d      | loes not depend on              |                                  |                     |



|     | <ul><li>a) specific heat of hot fluid</li><li>c) inlet temperature of hot fluid</li></ul>                                                                                | b) specific heat of cold fluid<br>d) <u>LMTD</u>                                        |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| 20. | An element in fuel oil responsible                                                                                                                                       | e for corrosion in exhaust system of a boiler is                                        |  |  |  |
|     | a) carbon b) hydroger                                                                                                                                                    | n c) <u>sulphur</u> d) chlorine                                                         |  |  |  |
| 21. | The presence of calcium and ma                                                                                                                                           | agnesium bicarbonates in feedwater to a boiler would form:                              |  |  |  |
|     | a) acidic solution                                                                                                                                                       | b) alkaline solution                                                                    |  |  |  |
|     | c) neutral solution                                                                                                                                                      | d) none of the above                                                                    |  |  |  |
| 22. | Turn down ratio of a burner is the                                                                                                                                       | e ratio of                                                                              |  |  |  |
|     |                                                                                                                                                                          |                                                                                         |  |  |  |
| 23. | Comparatively, lowest excess a                                                                                                                                           | ir is required in a                                                                     |  |  |  |
|     | a) coal burner                                                                                                                                                           | b) low pressure oil burner                                                              |  |  |  |
|     | c) high pressure gas burner                                                                                                                                              | d) high pressure oil burner                                                             |  |  |  |
| 24. | The velocity of steam in steam p                                                                                                                                         | ipe is directly proportional to                                                         |  |  |  |
|     | <ul><li>a) number of bends in pipe</li><li>c) length of pipe</li></ul>                                                                                                   | <ul> <li>b) <u>specific volume of steam</u></li> <li>d) diameter of the pipe</li> </ul> |  |  |  |
| 25. | The emissivity of ceramic coatin                                                                                                                                         | ngs used in furnace                                                                     |  |  |  |
|     | <ul> <li>a) decreases with increase in fur</li> <li>b) Increases with increase in fur</li> <li>c) remains constant</li> <li>d) decreases with increase in fur</li> </ul> | nace temperature                                                                        |  |  |  |
| 26. | Scale losses in reheating furnad                                                                                                                                         | ale losses in reheating furnaces will                                                   |  |  |  |
|     | a <u>) increase with excess air</u><br>c) have no relation with excess a                                                                                                 | b) decrease with excess air<br>d) increase with CO in combustion gases                  |  |  |  |
| 27. | Instrument used for measuring b                                                                                                                                          | illet temperature in a reheating furnace is                                             |  |  |  |
|     | a) thermograph                                                                                                                                                           | b) infrared pyrometer                                                                   |  |  |  |
|     | c) Pt/Pt-Rh thermocouple with in                                                                                                                                         |                                                                                         |  |  |  |
| 28. | Glass mineral wool can be applied                                                                                                                                        | ed for temperature range application upto                                               |  |  |  |
|     | a) 950 °C b) <u>50</u>                                                                                                                                                   | <u>0</u> °C c) 1200 °C d) 750 °C                                                        |  |  |  |
| 29. | Heat transfer in a reheating furn                                                                                                                                        |                                                                                         |  |  |  |
|     | a) Conduction b) Convect                                                                                                                                                 | tion c) Radiation <u>d) All of the above</u>                                            |  |  |  |
| 30. | The storage heat losses in a bat                                                                                                                                         | ch type furnace can be best reduced by                                                  |  |  |  |
|     | a) insulating brick b <u>) ceramic</u>                                                                                                                                   | fibre c) cold face insulation d) fire brick                                             |  |  |  |
| 31. | The cogeneration system which has high over                                                                                                                              | · · ·                                                                                   |  |  |  |
|     | a) back pressure steam turbine                                                                                                                                           | b) combined cycle                                                                       |  |  |  |



|     | c) extraction condens      | sing steam turbine        | d) recip                                    | procating engine      |  |
|-----|----------------------------|---------------------------|---------------------------------------------|-----------------------|--|
| 32. | The Brayton cycle is       |                           | - / 1                                       | 5 5 5                 |  |
|     |                            |                           | a) and turbing                              | d) none of the choice |  |
| 33. | a) steam turbine           | b) petrol engine          | c) <u>gas turbine</u>                       | d) none of the above  |  |
| 55. |                            | ste heat recovery syste   | In is used mainly in a                      |                       |  |
|     | a) boiler<br>c) compressor |                           | b <u>) reheating furn</u><br>d) gas turbine | ace                   |  |
| 34. | The device used for        | recovering waste heat fi  | om the textile drier exhau                  | st                    |  |
|     | a <u>) heat wheel</u>      | b) recuperator            | c) economizer                               | d) regenerator        |  |
| 35. | Density of liquid fuels    | s are measured at a refe  | erence temperature of                       |                       |  |
|     | a) 0°C                     | b <u>) 15°C</u>           | c) 25°C                                     | d) 30°C               |  |
| 36. | Which of the followin      | g contributes to erosive  | effect on burner tips durir                 | ng combustion?        |  |
|     | a) <u>ash content</u>      | b) water content          | c) sulphur content                          | d) volatile matter    |  |
| 37. | In the context of coge     | eneration turbine, the th | ermodynamic process tak                     | ing place is          |  |
|     | a) <u>expansion</u>        | b) condensation           | c) contraction                              | d) both (a) & (c)     |  |
| 38. | Reduction of steam p       | pressure will increase    |                                             |                       |  |
|     | a) sensible heat           |                           | b) enthalpy                                 | of steam              |  |
|     | c) saturation temperature  |                           | d) <u>specific v</u>                        | volume                |  |
| 39. | Ten meter lift of conc     | lensate in a distribution | pipe work will result in                    |                       |  |
|     | a) 0.1 bar back pressure   |                           | b) <u>1 bar back pressure</u>               |                       |  |
|     | c) 10 bar back pres        |                           |                                             | f the above           |  |
| 40. |                            |                           | nedium for soot blowing in                  | n boilers .           |  |
|     | a) compressed air          |                           | b) <u>steam</u>                             |                       |  |
|     | c) high pressure wate      | er                        | d) all of th                                | e above               |  |
| 41. | The recommended T          | DS level for package fir  | e tube boilers is                           |                       |  |
|     | a) 10,000 ppm              | b) 5,000 ppm              | c) 2,000 ppm                                | d) <u>3,000 ppm</u>   |  |
| 42. | Ideal furnace for mel      | ting & alloying is        |                                             |                       |  |
|     | a) induction furnace       |                           | b) cupola furnace                           |                       |  |
|     | c) rotary hearth           |                           | d) recirc                                   | ulating bogie furnace |  |
| 43. | Commonly used flux         | medium in a cupola fur    | nace                                        |                       |  |
|     | a) calcium carbide         |                           | b) fluors                                   | spar                  |  |
|     | c) calcium carbonate       | 1                         | d) sodiu                                    | im carbonate          |  |



| 44. | Dolomite is a                          | type of refracto         | ry                  |                   |                                  |
|-----|----------------------------------------|--------------------------|---------------------|-------------------|----------------------------------|
|     | a) acidic                              | b) <u>basic</u>          | c) neut             | ral               | d) none of the above             |
| 45. | The unit of specif                     | ic gravity in SI system  | is                  |                   |                                  |
|     | a) kg/ m <sup>3</sup>                  | b) m³/kg                 | c) gm/              | сс                | d) none of the above             |
| 46. | Insulation used for                    | or temperatures more t   | han 350°C is        |                   |                                  |
|     | a) polyurethane                        | b) polystyrene           | c) <u>c</u>         | alcium silicate   | d) wood                          |
| 47. | Time dependent                         | property that determine  | es the deformation  | on of a refractor | y is                             |
|     | a) <u>creep</u>                        |                          |                     | b) refractorin    | less under load                  |
|     | c) porosity                            |                          |                     | d) crushing s     | strength                         |
| 48. | Capillary wick is a                    | a part of                |                     |                   |                                  |
|     | a) heat pump                           | b) heat wheel            | <u>c) heat pipe</u> | d) heat reco      | overy steam generator            |
| 49. | The working fluid                      | for thermo compresso     | r is                |                   |                                  |
|     | a) low pressure si<br>c) compressed ai |                          |                     | /                 | essure steam<br>eat from chimney |
| 50. | Fly ash in a FBC                       | boiler is in the range o | f                   |                   |                                  |
|     | a) 20%                                 | b) 30%                   | c) 40%              | d) <u>none d</u>  | of the above                     |

### Section - II: SHORT DESCRIPTIVE QUESTIONS

Marks:  $8 \times 5 = 40$ 

- (i) Answer all 8 questions(ii) Each question carries 5 marks

| S-1 | is heated us<br>Calculate th | sing saturated st          | eam at 8   | 3 bar in a heat                | exchang    | heat of 0.38 kCal/kg°C<br>Jer from 65°C to 115°C.<br>am required for heating |
|-----|------------------------------|----------------------------|------------|--------------------------------|------------|------------------------------------------------------------------------------|
|     | Steam<br>Pressure<br>(bar)   | Steam<br>Temperature<br>°C | l<br>Water | Enthalpy kcal/k<br>Evaporation | g<br>Steam |                                                                              |
|     | 8.0                          | 170                        | 170        | 490                            | 660        |                                                                              |



| ٨٥٥ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25000 0.20 (115.65)                                                                                                                                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans | a) Heat gain by soda liquor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 35000 \times 0.38 \times (115-65)$<br>= 665000 Kcal/hr                                                                                                                                 |
|     | Heat lost by saturated steam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |
|     | Steam required for heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 665000 / 490                                                                                                                                                                            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 1357  Kg/hr                                                                                                                                                                             |
|     | Amount of steam required fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |
|     | b)LMTD calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = (170-115)-(170-65)                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ln (170-115)                                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (170-65)                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= (55-105)/\ln(55/105)$<br>= 77.3°C                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |
| S-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es/hr of dry saturated steam at 7 kg/cm <sup>2</sup> g having specific<br>e flow velocity not to exceed 25 m/s, determine the pipe                                                        |
| Ans | Volumetric flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 5500 \times 0.28 = 1540 \text{ m}^3/\text{hr}$                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 1540/3600                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= 0.43 \text{ m}^3/\text{s}$                                                                                                                                                             |
|     | Cross sectional area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = volumetic flow rate / velocity                                                                                                                                                          |
|     | $214 D^{2}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.43 / 25                                                                                                                                                                               |
|     | $3.14 \text{ x } \text{D}^{2}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.017<br>= 0.0217                                                                                                                                                                       |
|     | Diameter, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0.0217<br>= 0.149 m (or) 150 mm                                                                                                                                                         |
| 0.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                                                                                                                                                                       |
| S-3 | sensible heat of 166 kCal/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | te from a heat exchanger is coming out at 6 bar(g) with a<br>g. Using a flash vessel, the condensate is flashed to 1<br>of 120 kCal/kg and latent heat of 526 kCal/kg. Find out<br>kg/hr. |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | above is used to heat water from 30°C to 80°C by direct ity of hot water in that can be obtained per hour.                                                                                |
| Ans | a) Flash steam available %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =(S1 - S2 )/ L2                                                                                                                                                                           |
|     | S1 = is the sensit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ble heat of higher pressure steam                                                                                                                                                         |
|     | S2 = is the sensitive se | ble heat of the steam at lower pressure                                                                                                                                                   |
|     | L2 = is the latent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | heat of flash steam (at lower pressure)                                                                                                                                                   |
|     | Flash Steam generate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d = $(166 - 120) \times 230$                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 526                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 20.11 Kg/hr.                                                                                                                                                                            |
|     | b) Quantity of hot water gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prated                                                                                                                                                                                    |



|     | m x cp x (80-30) = 20.11 x (120+526)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | m = 260  kg/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S-4 | <ul> <li>The evaporation ratio of a coal fired boiler is 4.50. A quantity of 600 kCal/kg of heat is added to the feed water in the boiler to produce the steam.</li> <li>a) If the GCV of coal is 3800 kCal/kg, find out the efficiency.</li> <li>b) Find out the total enthalpy of the steam as per the details of the data given below Saturation temperature = 143°C Sensible heat = 143.7 kCal/kg Latent heat = 509.96 kCal/kg Specific volume = 0.47 m<sup>3</sup>/kg</li> </ul> |
|     | Dryness fraction of steam $= 96\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ans | a) Boiler efficiency (%) = Evaporation ratio x enthalpy added x 100<br>GCV of coal                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Boiler efficiency $= 4.5 \times 600/3800$<br>= 71 %                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | b) Total enthalpy of steam = $143.7 + (0.96 \times 509.96)$<br>= $633.26$ kCal/kg                                                                                                                                                                                                                                                                                                                                                                                                     |
| S-5 | a. 'Steam should be used in the process at the lowest acceptable pressure '. Explain the significance of the terms 'lowest' and 'acceptable'                                                                                                                                                                                                                                                                                                                                          |
|     | b. Explain briefly about 'turbine heat rate'. How is it related to turbine efficiency ?                                                                                                                                                                                                                                                                                                                                                                                               |
| Ans | <b>a.</b><br>'lowest' : Lower the pressure higher is the latent heat which is primarily used in the process. Hence the lowest pressure would be desirable.                                                                                                                                                                                                                                                                                                                            |
|     | 'acceptable': However the lower the steam pressure lower will be the steam<br>temperature. Since the temperature is the driving force for heat transfer, rate of heat<br>transfer reduces and increases process time. Therefore there is a limit to the reduction<br>in steam pressure.                                                                                                                                                                                               |
|     | <b>b.</b><br>Heat rate is the heat input to turbine, needed to produce 1 kWh of electricity                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Turbine efficiency is the ratio useful heat and power output, to the heat input to the turbine in Kcal or KJ, expressed as a percentage. Performance of steam turbine is also expressed as heat rate, which is the quantity of heat in kCal or KJ required to generate 1 kWh of electrical power output.                                                                                                                                                                              |
|     | Turbine heat rate is expressed in kJ/kWh. The inverse relation between heat rate and efficiency is applicable only to a power plant, since all the input energy is deployed for power generation alone.                                                                                                                                                                                                                                                                               |



| S-6 | Write short notes on factors affecting wall losses in batch type reheating furnaces?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans | <ul> <li>a) Emissivity of walls : Emissivity of fire brick refractory should be high<br/>Emissivity of most of the refractory bricks decreases with increase in<br/>temperature. High emissivity coatings whose emissivity increases with<br/>temperature can be used to increase emissivity and decrease wall losses.</li> <li>b) Conductivity of refractories: The refractory and insulating bricks should have<br/>low thermal conductivity. Chosing low thermal conductivity bricks will<br/>reduce wall losses. Conductivity raises with rise in temperature. Batch type<br/>furnaces can use ceramic fibre to reduce storage losses.</li> </ul>                                    |
|     | c) Wall thickness of batch furnaces: Heat losses can be reduced by increasing the <b>wall thickness</b> , or through the application of insulating bricks. Outside wall temperature and heat losses for a composite wall of a certain thickness of firebrick and insulation brick are much lower due to lesser conductivity of may be worked out to reduce the heat storage.                                                                                                                                                                                                                                                                                                             |
| S-7 | Explain any two proven methods of testing steam traps?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ANS | <ul> <li>There are two proven methods of testing of steam traps: - Sound method and Temperature method.</li> <li><b>1.Sound Method :</b> Mechanisms within steam traps and the flow of steam and condensate through steam traps generate sonic (audible to the human ear) and supersonic sounds. Proper listening equipment, coupled with the knowledge of normal and abnormal sounds, can yield reliable assessments of steam trap working condition. Listening devices range from a screwdriver or simple mechanic's stethoscope that allow listening to sonic sounds.</li> </ul>                                                                                                      |
|     | 2.Temperature Method: Saturated steam and condensate exist at the same temperature. So it's not possible to distinguish between the two based on temperature. Still, temperature measurement provides important information for evaluation purposes. A cold trap (i.e., one that is significantly cooler than the expected saturated steam temperature) indicates that the trap is flooded with condensate, assuming the trap is in service. On the other hand, the temperature downstream of the trap will be nearly constant if significant steam is getting past the trap. At the low-end, spitting on the trap and watching the sizzle provides a general indication of temperature. |



|     | Finally, non-contact (i.e., infrared) temperature measuring devices provide the precision of thermometers and thermocouples without requiring physical contact. Non-contact temperature measurement makes it easier to evaluate traps that are relatively difficult or dangerous to access closely.                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-8 | A vessel has to be cooled from 90°C to 55°C. The mass of the vessel is 2 tonnes. The specific heat of vessel material is 0.18 kCal/kg °C. The vessel is cooled with water which is available at 28°C. The maximum allowed increase in water temperature is 5°C. Calculate the quantity of water required for vessel cooling. |
| Ans | Mass of vessel (m) = 2000 kg<br>Specific heat (Cp) = 0.18 kCal/kg °C<br>Initial vessel temperature (T1) = 90°C<br>Desired vessel temperature (T2) = 55°C<br>Total heat that has to be removed from the vessel = m x Cp x (T1 - T2)<br>= 2000 x 0.18 x (90-55)<br>= 12600 kCal                                                |
|     | Quantity of water required= M kgSpecific heat of water= 1 kCal/kg °CInlet cooling water temperature (T3)= $28^{\circ}C$ Maximum cooling water outlet temperature (T4)= $33^{\circ}C$ Heat removed by water,12600= M x 1 x (33 - 28)                                                                                          |
|     | Quantity of water required , $M = 12600/5 = 2520 \text{ kg}$                                                                                                                                                                                                                                                                 |

----- End of Section - II ------

### Section - III: LONG DESCRIPTIVE QUESTIONS

Marks: 6 x 10 = 60

- (i) Answer all **6** questions
- (ii) Each question carries 10 marks

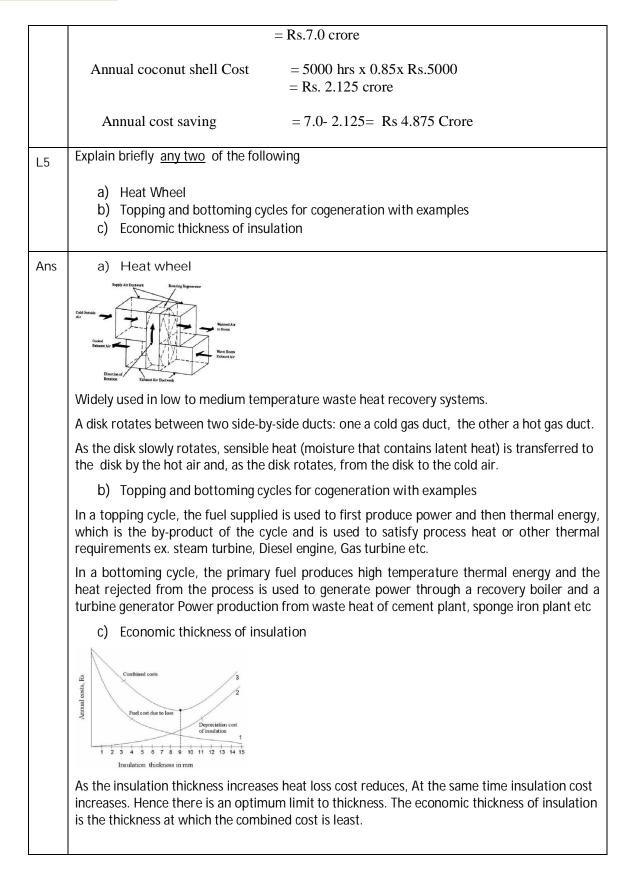
L-1 Paddy husk is being used as a fuel in a water tube boiler. The ultimate analysis of fuel is given below. Calculate the theoretical quantity of air required for complete



| combustion and also compu-                                    | te the quantity of CO <sub>2</sub> , H <sub>2</sub> O and SO <sub>2</sub> generated per 100 kg                                           |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                             | s of paddy husk is given below.                                                                                                          |
| Ultimate analysis of paddy                                    | husk %                                                                                                                                   |
| Moisture                                                      | 10.8                                                                                                                                     |
| Mineral Matter                                                | 16.7                                                                                                                                     |
| Carbon                                                        | 34.0                                                                                                                                     |
| Hydrogen                                                      | 5.0                                                                                                                                      |
| Nitrogen                                                      | 0.9                                                                                                                                      |
| Sulphur                                                       | 0.1                                                                                                                                      |
| Oxygen                                                        | 32.5                                                                                                                                     |
| GCV (kCal/kg)                                                 | 3570                                                                                                                                     |
|                                                               |                                                                                                                                          |
|                                                               |                                                                                                                                          |
| ANS Considering a sample of 100                               | ) kg of paddy husk. The chemical reactions are:                                                                                          |
| Oxygen required for comple                                    | ete combustion of carbon:                                                                                                                |
| C +<br>(34.0) C + (34 x 2.67)                                 | O2 à CO2<br>O2 à <b>124.78</b> CO2                                                                                                       |
| 90.78                                                         | 02 a 124.70 002                                                                                                                          |
| Oxygen required for comple                                    | ete combustion of hydrogen:                                                                                                              |
| H2 + O                                                        | 2 à <b>H2O</b>                                                                                                                           |
| (5) H2 + (5 × 8) O2<br>40                                     | à <b>45</b> H2O                                                                                                                          |
| Oxygen required for comple                                    | ete combustion of sulphur:                                                                                                               |
| S +                                                           | $O_2$ à $SO_2$                                                                                                                           |
| $(0.1) S + (0.1 \times 1) \\ 0.1$                             | O <sub>2</sub> à <b>0.2</b> SO <sub>2</sub>                                                                                              |
| Total Oxygen required                                         | = 90.78 + 40 + 0.1 = 130.88                                                                                                              |
| Additional Oxygen Required                                    | 100  kg fuel (given)= 32.5 kgd= 130.88 - 32.5= 98.38r reqd.= (98.38) / 0.23= 427 kg                                                      |
| $CO_2$ generated per 100 kg of $H_2O$ generated per 100 kg of | -                                                                                                                                        |
| SO <sub>2</sub> generated per 100 kg of                       | f fuel $= 0.2 \text{ kg}$                                                                                                                |
| oil from 255°C to 360°C by                                    | f a refinery, furnace is operated to heat 500 $\text{m}^3/\text{hr}$ of crude firing 3.4 tons/hr of fuel oil having GCV of 9850 kcal/kg. |
| As an energy conservation                                     | measure, the management has installed an air preheater                                                                                   |



|     | (APH) to reduce the flue gas heat loss. The APH is designed to pre-heat 57 tonnes/hr of combustion air to 195°C.<br>Calculate the efficiency of the furnace before & after the installation of APH. |                                                                                                                                                                                                                         |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Consider the following data:                                                                                                                                                                        | e oil = 0.6 kcal/kg°C<br>= 0.24 kcal/kg°C<br>rude oil = 0.85                                                                                                                                                            |  |  |  |
| ANS | Before the installation of AF                                                                                                                                                                       | <u>PH</u>                                                                                                                                                                                                               |  |  |  |
|     | Heat gain by the crude                                                                                                                                                                              | = 500 x 1000 x 0.85 x 0.6 x (360-255)<br>= 26775000 Kcal/hr                                                                                                                                                             |  |  |  |
|     | Heat input to the furnace                                                                                                                                                                           | = 3.4 x1000x 9850<br>= 33490000 kcal/hr                                                                                                                                                                                 |  |  |  |
|     | Efficiency of the furnace                                                                                                                                                                           | = 26775000 / 33490000<br>= 80 %                                                                                                                                                                                         |  |  |  |
|     | After the installation of API                                                                                                                                                                       | I                                                                                                                                                                                                                       |  |  |  |
|     | Heat gain by the crude                                                                                                                                                                              | = 500 x 1000 x 0.85 x 0.6 x (360-255)<br>= 26775000 Kcal/hr                                                                                                                                                             |  |  |  |
|     | Heat gain by Air-preheater                                                                                                                                                                          | Heat gain by Air-preheater = $57 \times 1000 \times 0.24 \times (195-28)$<br>= 2284560 Kcal/hr                                                                                                                          |  |  |  |
|     | Heat reduction in input to the furnace = Heat gain by Air-preheater                                                                                                                                 |                                                                                                                                                                                                                         |  |  |  |
|     | New Heat input to the furnace= $33490000 - 2284560$<br>= $31,205,440$                                                                                                                               |                                                                                                                                                                                                                         |  |  |  |
|     | Efficiency of furnace after i                                                                                                                                                                       | nstallation of APH = 26775000 / 31,205,440<br>= 85.8 %                                                                                                                                                                  |  |  |  |
| L3  | furnace with hot face insulation of known as veneering: ie over the ex                                                                                                                              | considering retrofitting the existing heat treatment<br>75 mm ceramic fibre. (Note: Hot face insulation is<br>isting refractory lining, ceramic fibre modules are<br>ring operation and heat storage loss in refractory |  |  |  |
|     | Furnace Operating data:                                                                                                                                                                             |                                                                                                                                                                                                                         |  |  |  |
|     | Heat Treatment furnace :                                                                                                                                                                            | (Bogey Type) Batch Operation                                                                                                                                                                                            |  |  |  |
|     | Furnace Capacity:Fuel type:                                                                                                                                                                         | 5 Ton (per batch)<br>Furnace Oil                                                                                                                                                                                        |  |  |  |
|     | Surface Area ofSide wallsBack Wall                                                                                                                                                                  | $(1.4 \text{ x } 4.5) \text{ x } 2 = 12.6 \text{ m}^2$<br>0.95 x 1.4 = 1.33 m <sup>2</sup>                                                                                                                              |  |  |  |




|     | Roof                         | :                                                                 | 0.95  x  4.5 = 4   | $4.3 \text{ m}^2$               |                    |  |
|-----|------------------------------|-------------------------------------------------------------------|--------------------|---------------------------------|--------------------|--|
|     | Refractory Ty                | ype :                                                             | Fire Bricks        |                                 |                    |  |
|     |                              |                                                                   |                    |                                 |                    |  |
|     | Wall Thickne<br>Side v       |                                                                   | 18 inches          |                                 |                    |  |
|     | Arch                         | walls .                                                           | 13.5 inches        |                                 |                    |  |
|     | -                            | old starts per month:                                             |                    |                                 |                    |  |
|     | Number of batches per month: |                                                                   | 15 Nos.            |                                 |                    |  |
|     | Fuel Cost                    | :                                                                 | Rs 48/ kg          |                                 |                    |  |
|     | GCV of furna                 | ace oil :                                                         | 10200 kCal/k       | g                               |                    |  |
|     |                              |                                                                   |                    |                                 |                    |  |
|     | Heat Storage<br>are given be | e (kCal /m <sup>2</sup> ) for bate<br>low.                        | ch operation and c | cold start from wa              | lls and roof area  |  |
|     |                              | For batch of                                                      | operation          | Cole                            | d Start            |  |
|     |                              | Existing(with                                                     | 75 mm              | Existing(with                   | 75 mm              |  |
|     |                              | only fire bricks)                                                 | Veneering+         | only fire                       | Veneering+ fire    |  |
|     |                              |                                                                   | fire bricks        | bricks)                         | bricks             |  |
|     | Wall                         | 79480                                                             | 45350              | 116697                          | 23,964             |  |
|     | Roof                         | 74770                                                             | 31,401             | 97,236                          | 16,438             |  |
|     |                              |                                                                   |                    |                                 |                    |  |
|     | a) Total                     | following due to ve<br>heat loss reduction<br>heat loss reduction | per month from w   |                                 |                    |  |
| Ans | -                            | culation for batch                                                |                    | 70400 45250 2                   | 4120 K 1           |  |
|     |                              | on from Wall per $m^2$                                            |                    | 79480-45350 =3                  |                    |  |
|     |                              | n from total side wa                                              |                    |                                 |                    |  |
|     |                              | on from roof per $m^2$                                            |                    | = 74770- 31401 =43369 Kcal      |                    |  |
|     | Heat reductio                | n from total roof an                                              | rea =              | = 43369  x 4.3 = 186486.7  Kcal |                    |  |
|     | Total heat red               | luction per batch fro                                             | om wall& roof $=$  | 475430. 90 + 186                | 486.7              |  |
|     |                              |                                                                   | =                  | = 661917.60                     |                    |  |
|     | Number of ba                 | atches per month                                                  | =                  | = 15 Nos                        |                    |  |
|     | Total heat red               | luction per month f                                               | rom wall& roof     | = 661917.6 x15                  |                    |  |
|     |                              | Ĩ                                                                 |                    | = <b>9928764</b> Kcals          | s/month            |  |
|     |                              |                                                                   |                    |                                 |                    |  |
|     |                              | culation for Cold S                                               |                    |                                 |                    |  |
|     | Heat reductio                | n from Wall per m <sup>2</sup>                                    | =                  | 116697.5- 23,96                 | 54.50 = 92733 Kcal |  |



| Heat reduction from total side wall & back wall = $92733 \times 13.93 = 1291770.69$ Kc                                                             | al   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Heat reduction from roof per $m^2$ = 97,236 - 16,438.00 = 80798 Kcal                                                                               |      |
| Heat reduction from total roof area $= 80798 \times 4.3 = 347431.4 \text{ Kca}$                                                                    | 1    |
| Total heat reduction per batch from wall& roof =1291770.69 + 347431.4                                                                              |      |
| =1639202                                                                                                                                           |      |
| Number of cold starts per month =5 Nos.                                                                                                            |      |
| Total heat reduction per month from wall& roof = <b>8196010</b>                                                                                    |      |
| Total heat reduction per month from operation and cold start =1,81,24,774kCal/mo                                                                   | onth |
| a) Find out the efficiency of the furnace oil fired boiler by direct method in a agro                                                              |      |
| product manufacturing plant with the data given below:                                                                                             |      |
| Type of boiler : Furnace oil fired                                                                                                                 |      |
| Quantity of steam (dry) generated : 5 Ton per hour (TPH)                                                                                           |      |
| Steam pressure / temp $: 10 \text{ kg/cm}^2(\text{g})/ 180 ^{\circ}\text{C}$                                                                       |      |
| Quantity of oil consumed : 0.350 TPH                                                                                                               |      |
| Feed water temperature: 75 °CGCV of Furnace oil: 10400 kCal/kg                                                                                     |      |
| GCV of Furnace oil: 10400 kCal/kgEnthalpy of saturated steam at 10 kg/cm2: 665 kCal/kg                                                             |      |
| Enthalpy of feed water : 75 kCal/kg                                                                                                                |      |
| Entituipy of feed water . 75 Keal/Kg                                                                                                               |      |
| b) The above furnace oil fired boiler was converted to coconut shell firing.<br>Determine the boiler efficiency by direct method after conversion. |      |
| GCV of coconut shell fuel : 4565 kCal/kg                                                                                                           |      |
| Quantity of coconut shell consumed for the same steam demand and                                                                                   |      |
| pressure. : 850 kg/hr                                                                                                                              |      |
| <ul> <li>c) The cost of fuel and operating hour of boiler are given below.</li> <li>Operating hour/ year = 5000 hr</li> </ul>                      |      |
| <ul> <li>Operating hour/ year = 5000 hr</li> <li>Cost of furnace oil per ton = Rs 40000/ton</li> </ul>                                             |      |
| • Cost of coconut per ton $=$ Rs 5000/ton                                                                                                          |      |
| Find out the annual cost saving due to the fuel substitution fuel in the                                                                           |      |
| above boiler?                                                                                                                                      |      |
| NS a)Boiler efficiency with furnace oil firing :                                                                                                   |      |
| Boiler Efficiency ( $\eta$ ) = 5000 x (665-75) x 100 / (350 x 10400)                                                                               |      |
| Boiler efficiency $= 81\%$ (on GCV basis)                                                                                                          |      |
| b)Boiler efficiency with coconut shell fuel firing :                                                                                               |      |
| Boiler Efficiency ( $\eta$ ) = 5000 x (665-75) x 100/ (850 x 4565)                                                                                 |      |
| Boiler efficiency $= 76\%$ (on GCV basis)                                                                                                          |      |
| c) Annual cost saving                                                                                                                              |      |
| Annual furnace oil cost $= 5000$ Hr x 0.35 x Rs 40000                                                                                              |      |







| L6       | List five energy conservation measures in ANY TWO of the following:                                 |
|----------|-----------------------------------------------------------------------------------------------------|
|          |                                                                                                     |
|          | a) Furnaces                                                                                         |
|          | b) Steam distribution systems                                                                       |
|          | c) Boilers                                                                                          |
| Ans      | a) Furnaces                                                                                         |
| _        | 1) Complete compution with minimum everes oir                                                       |
|          | 1) Complete combustion with minimum excess air                                                      |
|          | 2) Correct heat distribution                                                                        |
|          | 3) Operating at the desired temperature                                                             |
|          | 4) Reducing heat losses from furnace openings                                                       |
|          | 5) Maintaining correct amount of furnace draught                                                    |
|          | 6) Optimum capacity utilization                                                                     |
|          | 7) Waste heat recovery from the flue gases                                                          |
|          | 8) Minimum refractory losses                                                                        |
|          | 9) Use of Ceramic Coatings                                                                          |
|          | b) Steep Distribution systems                                                                       |
|          | b) Steam Distribution systems                                                                       |
|          | 1. Monitoring Steam Traps                                                                           |
|          | 2. Avoiding Steam Leakages                                                                          |
|          | 3. Providing Dry Steam for Process                                                                  |
|          | 4. Utilising Steam at the Lowest Acceptable Pressure for the Process                                |
|          | 5. Minimising Heat Transfer Barriers                                                                |
|          | 6. Proper Air Venting                                                                               |
|          | 7. Condensate Recovery                                                                              |
|          | 8. Insulation of Steam Pipelines and Hot Process Equipments                                         |
|          | 9. Flash Steam Recovery                                                                             |
|          | 10. Reducing the Work to be done by Steam                                                           |
|          | To. Reducing the work to be done by Steam                                                           |
|          | c) Boilers                                                                                          |
|          | 1 Deduce Check Temperature                                                                          |
|          | 1. Reduce Stack Temperature                                                                         |
|          | 2. Feed Water Preheating using Economiser                                                           |
|          | 3. Combustion Air Preheating                                                                        |
|          | 4. Ensure complete Combustion                                                                       |
|          | 5. Control excess air                                                                               |
|          | 6. Radiation and Convection Heat Loss                                                               |
|          | 7. Automatic Blowdown Control                                                                       |
|          | 8. Reduction of Boiler Steam Pressure                                                               |
|          | 9. Variable Speed Control for Fans, Blowers and Pumps                                               |
|          | <ol> <li>Ensure boiler Loading for Efficiency</li> <li>Boiler Replacement for efficiency</li> </ol> |
|          | The Dullet Replacement for efficiency                                                               |
| <u> </u> |                                                                                                     |