MAHARASTRA BOILER OPERATION ENGINEER EXAMINATION-2024 PAPER-1(BOILER ENGINEERING-1)

Time: 3.00 Hours Max. Marks: 100

Instructions to Candidates:

- 1. Attempt only FIVE questions.
- 2. Question No-1 is Compulsory.
- 3. All questions carry equal Marks.
- 4. Answer in brief and to the correct point will attract full marks.
- 5. Draw neat sketches wherever necessary for correct explanations.
- 6. Assume suitable data, if necessary.

Q.1(A): Choose the correct options and complete the following statements: [1x10=10]

1: The capacity of induced draft fan compared to forced draft fan in a boiler is......

a) Same	b) More
c) Less	d) Depending upon size of boiler.
2: During hot Banking Boiler is kept in	d) High air flow condition
a) Depressurized condition	3, 10
c) Firing condition	
3: Name the instrument used for measurement of	
a) Gravimeter	b) Bomb Calorimeter
c) Hydrometer	B) None of the Above
4: Buck stays are used to avoid	d) Over pressure
a) Buckling	
c) Firing	
5: The Heat required to raise temperature of 1kg of	of water from 0*C up to boiling temperature
is called as	
a) Latent heat of evaporation	b) Sensible heat
c) Boiling point	d) Excess heat
6: In case of fuel oils, choose the correct answer f	
relation between "specific heat" and "specific gra	
a) Lighter oil have higher specific heat	b) Heavier oil have lower specific heat
c) Lighter oil have lower specific heat	d) None of the above
7: Which one of the following fuels has the highes content?	t <mark>hydro</mark> gen content and lowest sulphur
a) Coal	b) Furnace Oil
c) Natural Gas	d) LSHS
8: Supercritical Technology is more sensitive to	··· b) Power generated
a) Fuel quality	d) Environment
c) Water chemistry	
9: What is the typical value for excess air supplied	in bagasse fired boiler?
a) 15-20	b) 15-50
c) 25-35	d) 25-50 b) In the fire tubes
10: The fusible plug, in small boilers is located at.	d) Over the combustion chnamber
a) In the drum	
c) Above steam drum	

Q.1(B): Explain the following terms in brief:

[2x5=10]

- (a) Define Steam Pipe as per The Boiler Act, 1923.
- (b) Define Evaporation ratio.

(c) Find out the excess air percentage supplied for a boiler if the theoretical CO2 is 20.67% and the actual CO2 measured in the flue gas is 14%. (d) Explain term grindability index of coal.

(e) Explain the term carryover.

Q.2(a): What is the function of orifices in coal pipes of mills?

14
ייין.

[4]

[4]

Q.2(b): Explain the difference between Jet Condensers and Surface condense Q.2(c): How is re-heater temp is controlled in a typical utility boiler?	ers. [5] [5]
0.2(d): Calculate cooling water quantity required for a surface condenser in the	

Q.2(d): Calculate cooling water quantity required for a surface condenser in the following case:

	i.	Quantity of steam flow: 55TPH	ii.	Condenser vacuum: -0.92kg/cm2
i	iii.	Dryness fraction of steam: 85%	iv.	Condensate temperature: 48*C
	٧.	Cooling water inlet temperature: 31*C	vi.	Cooling water outlet temperature: 42*C

Q.3(a): In a boiler operation, why is it crucial to regularly monitor and maintain prope	er
water levels? What specific risks ar issues can arise if the water level is too high or too low?	[4]
Q.3(b): Explain the difference between sub-critical and super-critical boilers.	[5]
Q.3(c): Digital-based instrumentation and control systems are part of modern boilers	5.

What are the advantages and gained with the use of these systems?

Q.3(d): The performance of a boiler plant are as given below:

[6]

	1	
A boiler generated 6.51 ton (of steam per ton Th	e boiler feed water temperature is
of coal fired.		110*C downstream of deaerator.
The steam generated is at 18k	(g/cm2(g)	Boiler Efficiency is 75%
Factor of evaporation is 1.15		Cp of the steam is 0.55kcal/kg*C

Determine:

- (i) The temperature of the steam and degree of superheat, (if any).
- (ii) The equivalent evaporation per ton of coal burned.
- (iii) The calorific value of coal.
- Q.4(a): Define the term Cogeneration. List out important technical parameters to be considered in a Cogeneration system.

Q.4(b): What are the principle heat losses that occur in the Boiler and list out the data required to calculate Boiler Efficiency using Indirect method and Direct method.

Q.4(c): What are the methods to improve Efficiency of Bagasse fired Water Tube Boiler?

Q.4(d): Find the volume of 1kg of steam at pressure of 14kg/cm2(g) in each of the following case:

(i) When steam is dry saturated?

(ii) When steam is wet having dryness fraction 0.9?

(iii) When steam is superheated, the degree of superheat being 40*C?

Q.5(a): Explain the important of magnetite layer in Boiler and how it is formed in Boiler.

Q.5(b): Explain the effects of Impurities in water on Boiler Components. [5]

Q.5(c): Differentiate short term and long-term overheating of boiler pressure part tubes?

Q.5(d): The following are the data collected for typical oil fired Boiler. Find out the efficiency of the Boiler by indirect method and Boiler Evaporation ratio.

i.	Types of Boiler: Oil fired	ii.	GCV of oil: 10200 kCal/kg
iii.	Ultimate analysis of oil: C=84%,	iv.	Steam generated pressure: 7kg/cm2(g)

	H2=12%, S=3%, O2=1%		saturated
v.	Enthalpy of steam: 660kcal/kg	vi.	Feed water temperature: 60*C
vii.	,0		% of CO2 in flue gas: 11%
ix.	Flue gas temperature(Tf): 220*C	x.	Ambient temperature(Ta): 27*C
xi.	Humidity of air: 0.018kg/kg of dry air.		

Q.6: Write Short Note (Any FOUR):

[4x5=20]

a) Three elements drum level control.	b) Boiler Drum and its Internals.
c) Boiler preservation methods.	d) Causes of Boiler Tube Leakages.
e) Boiler Steam Test.	f) Off season maintenance of bagasses
	fired boiler in Sugar Factory.

MAHARASTRA BOILER OPERATION ENGINEER EXAMINATION-2024 PAPER-2(BOILER ENGINEERING-2)

Time: 3.00 Hours Max. Marks: 100

Instructions to Candidates:

- 1. Attempt only FIVE questions.
- 2. **Question No-1** is Compulsory.
- 3. All questions carry equal Marks.
- 4. Answer in brief and to the correct point will attract full marks.
- 5. Draw neat sketches wherever necessary for correct explanations.
- 6. Assume suitable data, if necessary.

Q.1(A): State whether the following statements are TRUE or FALSE and write the

correct sentence: [1x10=10]

- 1: In a demineralization plant, the cation exchanger resin is in the hydroxyl form and anion exchanger resin is in the hydrogen form.
- 2. Secondary air in a pulverized fuel boiler is used to carry pulverized coal to the burners.
- 3. Increase of steam pressure results in steam temperature going up and enthalpy of evaporation going up.
- 4. Set pressure of Super-heater Safety valve is kept higher than Drum Safety Valve.
- 5. If steam and water can coexist at 1.033Kg/cm2 and 100*C, at this condition, steam is called saturated vapour and water is called saturated liquid.
- 6. Inverted bucket steam traps operate on the principle of difference in temperature between steam and condensate.
- 7. Suspension burning as well as Grate burning takes place in the spreader stoker Boiler.
- 8. Any branch connection welding can be waived against 100% radiograph by the Boiler Inspector during repairing.
- 9. ASTM-106 Gr.II is the Specification of Material used for Boiler tubes manufacturing. 10. Boiler water pH is always more than Feed water pH.

Q.1(B): Define the following terms in one or two sentences:

[1x5=5]

- 1. Turn-down Ratio.
- 2. Conductivity of Boiler Feed water.
- 3. Circulation Ratio.
- 4. Boiler as per the Boiler Act-1923.
- 5. Degree of Superheat.
- Q.1(C): Convert following units as directed:

[1x5=5]

1. 167 mm of Hg into mm of water column.
 2. 500 Btu/lb into Kcal/Kg.
 3. 1 Kwh into Kcal.

.2(a): Explain the terminology used for Safety Va	lve:		[4]
1. Set Pressure 2. Blow-down		3. Chattering	נדו
2.2(b): Explain the stages of Inspection for registr	ation of ne		
oiler Regulations.			[5]
.2(c): Explain the importance of RLA study, RLA	nethodolo	gy and approach.	[5]
.2(d): Efficiency of 300TPH coal fired boiler is 84			
equired per day. Feed water temp <mark>erature is 140*</mark>			
nthalpy of superheated steam is <mark>803 kcal/kg.</mark>			[6]
Q.3(a): What automatic action is taken by safe	<mark>ety</mark> interlo	cks in the following cas	ses: [4]
1. Drum level very high.	2. Furn	ace pressure very high) .
3. Deaerator level very high.	4. Supe	erheated steam temp h	igh.
.3(b): Explain heat transfer by Conduction, Conv			
arious parts of water tube high pressure Boilers.			[5]
.3(c): Which factors are responsible for Super-he			[5]
.3(d): Calculate power required to drive a forced	draft fan v	vhich maintains a draft	
0 mm of water. Under the following conditions:			[6]
i. Temperature of air in boiler house: 22*C			
ii. Density of air at NTP : 1.29 kg/m3			
iii. Air supplied per kg of coal: 18kg iv. Mass of fuel burnt: 2kg/sec.			
iv. Mass of fuel burnt: 2kg/sec. v. Efficiency of fan: 80%			
v. Efficiency of fail. 0070			
.4(a): What is the principle of CFBC Boiler?			[4]
.4(b): What are the causes of Boiler accidents an	d precauti	ons to be taken to avoi	
ccidents?			[5]
.4(c): Ela <mark>borate procedure of Cold Start-up of 10</mark>	TPH, Agro	waste fired Composite	•
oiler.			[5]
.4(d): Calculate height of Chimney to produce a d			n
then temperature of flue gases in Chimney is 317			
utside air is 38*C and quantity of air supplied is 1		tuel.	[6]
.5(a): State principle of thermodynamic steam tr	ар.		[4]
.5(b): Explain the advantages of Fluidized Bed Co	ombustion	(FBC) Boilers over	[5]
0.5(c): What is importance of Thermal Insulation a	and Name	any four insulating	re1
naterials.	and Manie	any rour moutating	[5]
.5(d): Estimate the pipe size required to carry dry			g)
ressure from Boiler giving steam flow rate 68750	Kg/Hr. As	sume Steam Velocity	
8m/sec.			[6]
.6: Write short notes on any FOUR.			[-]
		[4x5=	=20]
a) Equivalent Evaporation.			
	ts necessit		

MAHARASTRA BOILER OPERATION ENGINEER EXAMINATION-2024 PAPER-3(ENGINEERING DRAWING)

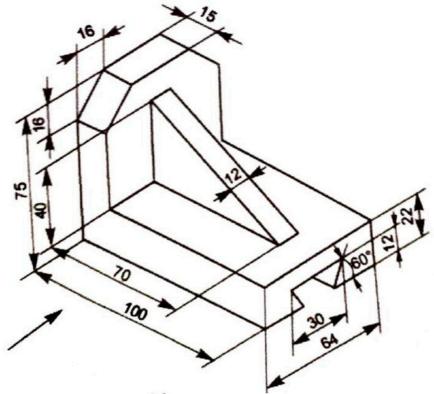
Time: 3.00 Hours Max. Marks: 100

Instructions to Candidates:

- 1. Attempt any FIVE questions.
- 2. All questions carry equal Marks.
- 3. Figures to the right indicate full marks.
- 4. Use suitable Scale where required.
- 5. Assume suitable missing data, if any.

Q.1(A): Draw a schematic sketch of a fusible plug.

[5]


Q.1(B): Create proportionate free h <mark>and sketches</mark> of the following:				
i.	i. Slip on raised face flange. ii. Steam pipe support.			
iii.	Long radius elbow. Socket	iv.	Concentric reducer.	
V.	weld elbow.			

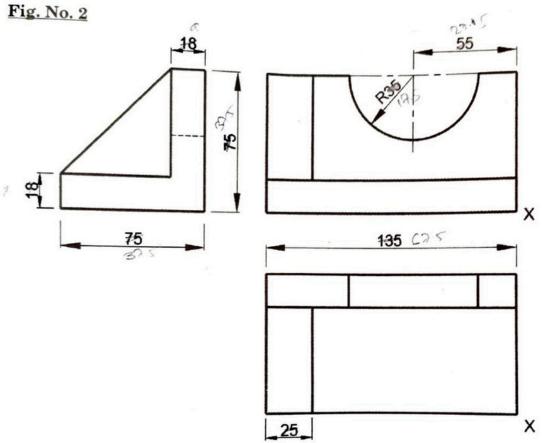
Q.1(C): Draw process instrumentation symbols of following valves:			
1. Gate Valve	2. Globe Valve	3. Check Valve	
4. Control Valve	5. Safety Valve		

Q.2: Figure No-1 shows a pictorial view of an object. Draw the following views. The arrow indicates the direction to obtain a view from the front. [20]

i.	Sectional front view.	ii.	Top view.
iii.	Side view from the left.	iv.	Indicate all essential dimensions.

Fig. No. 1

Q.3(A): Name and draw any FIVE types of welding joints.


Q.3(B): Draw Proportionate free hand sketches of following (any TWO).

[10]

[10]

- 1. Cyclone Dust Collector.
- 2. Swing Type Non return Valve.
- 3. Boiler Feed Water Pump.

Q.4(A): Construct an isometric scale and use it to make a true isometric view of the casting shown in the Figure No-2. [10]

Q.4(B): Draw with dimensions as mentioned here with for 2:1 Ellipsoidal dished end for steam drum. Take a scale of 1:20. [10]

SF: 100mm, Thickness(t): 20mm, OD: 4000mm, Knuckle radius(KR): 0.17xID, Crown Radius(CR): 0.9xID, Disc height: ID/4, Total height=SF+Disc height+t.

- Q.5(A): Draw proportionate sketch of a steam stop valve and name the parts.
- Q.5(B): Draw proportionate sketch of bag filter dust collection system.

Q.5(C): Draw a proportionate free hand sketch of drum internals assembly and name the parts.

Q.5(D): Draw proportionate sketch of plain tube economizer with inlet/outlet headers and name the parts. [5]

Q.6(A): Draw typical schematic general arrangement of coal or bagasses based steam power plant. Indicate all the essential parts. [10]

Q.6(B): Draw the P&I Diagram of water treatment plant for high pressure boilers from pre-treatment to DM Water. [5

- Q.6(C): Draw neat and proportionate sketch of any ONE of the following:
- 1. Bourdon type Pressure Gauge. 2. Sp
- 2. Spring Loaded Safety Valve.

[5]

[5]

3. Inverted Bucket type Steam Trap.